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Abstract
We establish a general framework to explore parametric statistics of individual
energy levels in unitary random matrix ensembles. For a generic confinement
potential Tr W(H), we (i) find the joint distribution functions of the eigenvalues
of H and H ′ = H + V for an arbitrary fixed V both for finite matrix size N and
in the ‘thermodynamic’ N → ∞ limit; (ii) derive many-point parametric
correlation functions of the two sets of eigenvalues and show that they are
naturally parametrized by the eigenvalues of the reactance matrix for scattering
off the ‘potential’ V ; (iii) prove the universality of the correlation functions
in unitary ensembles with non-Gaussian non-invariant confinement potential
Tr W(H − V ); (iv) establish a general scheme for exact calculation of level-
number-dependent parametric correlation functions and apply the scheme
to the calculation of intra-level velocity autocorrelation function and the
distribution of parametric level shifts.

PACS numbers: 05.45.Mt, 73.21.−b

1. Introduction

Parameter-dependent evolution of spectra in random matrix ensembles has been a subject of
investigation almost from the inception of the random matrix theory (RMT) [1, 2]. Dyson
[1] showed that the joint probability distribution function of the eigenvalues in the classic
random matrix ensembles can be alternatively obtained as an equilibrium distribution of a
one-dimensional gas of classical charges that undergo Brownian motion in fictitious time while
simultaneously logarithmically repelling each other. The same dynamics of eigenvalues arises
if the corresponding random matrices themselves execute Brownian motion [3] according to a
sequence of mappings H �→ H + dV where H is drawn from a random matrix ensemble and
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dV is the elementary step of the random walk in the space of matrices of the same symmetry
as H.

However, despite the theoretical interest in these types of models, the experimental
motivation in the early days of RMT was lacking since the nuclear spectra for which RMT
was originally devised [4] are essentially immutable. Later, the range of RMT applications
was broadened to include systems such as mesoscopic quantum structures (e.g., quantum dots)
which can be subject to a variety of external perturbations [5]. In fact, controlled external
perturbations such as magnetic field or gate potential often serve as important experimental
tools to study statistical properties of such systems. Thus, instead of a sequence of random
steps dV one is led to consider finite mappings H �→ H ′ = H + V , where V is a fixed matrix
with the same symmetry as the ensemble from which the matrices H are drawn1 [6–9].

While magnetic field clearly belongs to the class of extended perturbations, in many
applications the assumption that the rank of V scales with N may not prove to be adequate
in the RMT modelling of mesoscopic devices. External perturbations such as an STM tip,
a change in the potential on a finger-shaped gate or a jump in the position of a bi- or multi-
stable defect represent potentials that are localized in space. In the RMT language, localized
potentials are modelled by matrices V of finite rank r. Such matrices can be represented
using a finite set of orthonormal complex vectors {aκ}rκ=1 as V = N

∑r
κ=1 vκaκ ⊗ a†

κ . (For
technical reasons related to the use of the Itzykson–Zuber–Harish-Chandra (IZHC) integral
[10], our consideration here is restricted to the unitary ensemble, hence the requirement that
aκ are complex.)

In the standard RMT one can distinguish two classes of correlation functions between
the levels [2]. In the first class the levels are ‘labelled’ by their positions (‘energies’ in the
Hamiltonian interpretation of the random matrices), so that the fundamental object is the
many-point correlation function of the density of states (DoS) ν(E) = ∑N

α=1 δ(E − εα),

R̃n

({E}ni=1

) =
〈

n∏
i=1

ν(Ei)

〉
(1)

where the angular brackets denote averaging over the matrix ensemble. In the bulk region of the
spectrum the correlation functions are translationally invariant with respect to the simultaneous
shifts of all energies, so that R̃n is actually a function of n − 1 energy differences. Such
correlation functions are known to have determinantal structures in all three classic Wigner–
Dyson ensembles. For example, in the unitary ensemble, the N → ∞ limit results in

R̃n

({E}ni=1

) = det
ij

k̃(εi − εj ) (2)

where k̃(εi − εj ) = k(εi − εj ) − δ(εi − εj )θ(i − j), k(u) = sin πu/πu is the celebrated sine
kernel of the Wigner–Dyson RMT, the dimensionless energies ε ≡ E/	̄ are normalized by
the mean level spacing 	̄ = 〈ν(E)〉−1 ≡ ρ(E)−1, and the step-function θ is regularized so
that θ(0) = 0. The term involving the δ-function accounts for the self-correlation of levels.
Analogous structures with more involved kernels arise in other ensembles. While originally
derived in the context of the Gaussian unitary ensemble (GUE), the correlation kernel k
acquires the same universal form in the bulk scaling limit for a wide class of non-Gaussian
random matrix ensembles [11]

P(H) = CU e−Tr W(H) (3)

where W(H) is an even polynomial, and CU is the normalization constant.

1 A separate subject which is beyond the scope of this paper concerns mappings such that the symmetry of V is
lower than the symmetry of H.
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In the second class of correlation functions the levels are labelled by their numbers,
while their energies may or may not enter as additional variables depending on the specific
correlation function. An archetypal example is the distribution of level spacings S1(ω) which
is a particular case of the distribution Sq(ω) of distances between a level α and another level
separated from α by q − 1 other levels:

Sq(ω) = 	̄〈δ(εα − E)δ(εα+q − E − ω)〉. (4)

The distribution function S1 is actually a correlation function between an arbitrary level α

and its neighbour α + 1. Translational invariance in the bulk of the spectrum ensures that this
correlation function does not depend on either E or α. In contrast with (2) no summation over
α is involved, so that level-number-specific information is retained, and, indeed, near the edge
of the spectrum the same correlation function—now as a function of both level numbers—
describes the distribution of distances between, say, the second lowest and the third lowest
levels.

The two types of the correlation functions are related to each other via infinite series.
Thus, an equivalent expression for S1(ω) without referring to specific level numbers is the
joint probability to find two levels at positions E and E + ω and all other levels in the interval
R/[E,E + ω]. After straightforward algebra [2], S1(ω) is written as

S1(ω) = −	̄∂2
ω

∞∑
n=0

(−1)n

n!

∫ E+ω

E

dE1 . . .

∫ E+ω

E

dEnRn

({Ei}ni=1

)
(5)

where Rn

({E}ni=1

) = detij k(Ei − Ej) is the part of R̃n from which the level self-
correlation terms are excluded. Combined with the determinantal structure of Rn, this
formula allows one to express S1 in terms of the derivative of a certain generating function,
S1 = −	̄∂2

ω det[E,E+ω](I− k̂), where the determinant is understood as a Fredholm determinant
on the space of functions with the support in the interval [E,E +ω], and the kernel k̂ is defined
through its matrix elements: k̂(u,w) = k(u − w). Analogous expressions can be obtained
for other Sq . The Fredholm determinant itself, the generating function, is the probability
to find no levels in the interval [E,E + ω]. Generic Sq is similarly related to the Fredholm
determinant expression for the probability to find q − 1 levels in a given interval.

Conversely, the correlation function R2(E,E + ω) can be expressed as an infinite sum
over Sq ,

R2(E,E + ω) =
∞∑

q=−∞
Sq(ω) (6)

which is a simple restatement of the fact that the conditional (on the existence of a level α at
E) probability to find any level at E + ω is the sum over q of the (conditional) probabilities to
find the (α + q)th level at that position. Operationally, however, Rn is usually more readily
accessible than Sq , so that equation (6) and its analogues are not often used in practical
calculations.

In direct analogy with the duality between the two classes of correlation functions
described above for ordinary RMT, one can introduce their generalizations in the parametric
RMT. Thus, instead of Rn we are now led to define the parametric many-point correlation
function as

Rnm

({Ei}ni=1, {E′
j }mj=1

) =
〈

n∏
i=1

ν(Ei)

m∏
j=1

ν ′(E′
j )

〉
(7)

where ν ′(E) = Tr δ(E − H ′).
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Except in the r = 1 case (see below), the ‘level spacing’ in the combined set {E} ∪ {E′}
does not have an immediate physical interpretation. A more meaningful analogue of
equation (4) is the distribution of distances between a level α and the parametric ‘descendant’
of the level α + q ,

Pq(ω, x) = 	̄〈δ(εα − E)δ(εα+q(x) − E − ω)〉 (8)

where x is the set of the parameters characterizing V . Due to universality [7, 12], x can be
identified either with a single parameter x measuring the overall strength of V in the case of
extended (infinite rank) perturbations, or with a set of at most r parameters in the finite rank
case (see section 3). P0 is simply the distribution of shifts of a single level under the influence
of a parametric perturbation. Note the absence of summation over α; nevertheless, in the bulk
of the spectrum Pq is not a function of α.

A related quantity which in the past has been extensively studied in the context
of parametric correlations in chaotic and disordered systems using either numerical or
approximate analytical techniques [7, 13–16] is the single level velocity correlation function
C0(x). Within the formalism developed in the present paper, it is convenient to represent it as
a special case of the following correlation function,

Cq(x) = 〈∂xεα(x = 0)∂xεα+q(x)〉 (9)

which represents the correlation of responses to the perturbation of two levels separated by a
distance x in the parameter space, and by q − 1 levels in the level sequence.

The objective of this paper is to present a set of interrelated developments in the parametric
RMT. In the next section we construct a formalism to determine the joint distribution functions
for the eigenvalues of H and H ′ for perturbing matrices V of arbitrary rank r. In particular, we
concentrate on the case when r is finite in the N → ∞ limit, although the results are equally
applicable in the opposite limit where we reproduce the Gaussian transition kernel implicit in
the earlier work on the subject [7, 18].

In section 3.1 we use the joint distribution functions to derive the many-point correlation
function Rnm. We show that the latter possesses the determinantal structure at arbitrary r
[17], generalizing the result previously known only in the context of two-matrix models
[7, 18] (i.e., with V itself drawn from a random matrix ensemble), and thus corresponding
to r = N in the classification adopted here. In section 3.2 these results are applied to
prove (on a physical level of rigour) that the universality of the Wigner–Dyson sine kernel
extends to a class of non-invariant ensembles characterized by the distribution function
PV (H) = CU exp{−Tr W(H − V )}.

The final objective of this paper is to present (section 3.3) a general framework for the
calculation of Pq(ω, x), Cq(x) and related number-dependent correlation functions in terms
of the corresponding family of generating functions. Owing to the determinantal structure
of Rnm [7, 17, 18] (see also section 3.1 below), the latter possess representations in terms of
Fredholm determinants of certain parameter-dependent integral kernels.

2. Joint distributions of eigenvalues

Consider a set of pairs of matrices H and H ′ = H + V , with H being a random Hermitian
N × N matrix H drawn from the unitary ensemble P(H) and V is a deterministic matrix of
rank r. The joint distribution of the matrices H and H ′ is

P(H,H ′) = P(H)δ(H + V − H ′) (10)

where the matrix δ-function is understood as the product of ordinary scalar δ-functions—one
per each of the N2 independent variables of H. The joint distribution function of the combined
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set of eigenvalues {εα}Nα=1 of the matrix H and {ε ′
β}Nβ=1 of H ′ is obtained from the above

expression by integrating over the angular degrees of freedom,

P({ε}, {ε ′}) =
∫

	2(H)	2(H ′) dµ(U) dµ(U ′)P(H,H ′) (11)

where dµ(U) is the invariant Haar measure on the unitary group U(N), and 	(H) is the
Vandermonde determinant,

	(H) ≡ 	({ε}) =
∏

1�α<β�N

(εα − εβ). (12)

With the help of a Lagrange multiplier matrix λ (it is straightforward to show that independent
components of λ can be arranged into a Hermitian matrix) the expression for the joint
distribution function takes the form

P({ε}, {ε ′}) = CU

∫
	2(H)	2(H ′)	2(λ) dµ(U) dµ(U ′)

dµ(Uλ)

(2π)N
2−N

N∏
k=1

dλk

2π

× exp{i Tr(λH + λV − λH ′)} exp{−W(H)} (13)

where λk are the eigenvalues of λ. Integration over the angular degrees of freedom of H and
H ′ can be performed with the help of the IZHC integral [10]∫

dµ(U) exp{i Tr AUBU †} = c
detαβ [exp(iaαbβ)]

	(A)	(B)
(14)

where {aα}Nα=1, {bβ}Nβ=1 are the complete sets of the eigenvalues of the matrices A and B,

respectively, and c = (i/2)(N
2−N)/2∏N

j=1 j !. The remaining integral thus takes the form

P({ε}, {ε ′}) = CU|c|2
(2π)N

2

∫
	(H)	(H ′) dµ(Uλ)

N∏
k=1

dλk exp{i Tr(λV )}

×
∑
σ,σ ′

(−1)σ+σ ′
exp

{
i

N∑
α=1

(
εαλσ(α) − ε ′

αλσ ′(α)

)}
exp

{
−

N∑
α=1

W(εα)

}
(15)

where the sum over σ runs over all permutations of the indices 1, . . . , N , and (−1)σ denotes
the signature of the permutation. The ordering of the energy levels in the Vandermonde
determinants is assumed to be in the increasing order. Due to the invariance of the measure
µ(U), the integral in (15) does not depend on the ‘angular’ degrees of freedom of V . The
latter can thus be thought of as ‘gauge’ degrees of freedom of (15), and integrated over
with an appropriate measure dµ(r)({aκ}). A convenient choice for dµ(r)({aκ}) is the uniform
distribution of all components of aκ constrained only by the requirement of orthonormality.
Uλ rotations can now be absorbed into the rotations of V , and the integral over dµ(Uλ) gives
a constant µN = ∫

dµ(Uλ) = (2π)(N
2−N)/2

/∏N
j=1 j !. Equation (15) can now be rewritten as

P({ε}, {ε ′}) = CU|c|2µN

(2π)N
2−N

exp

(
−

N∑
α=1

W(εα)

)
	(H)	(H ′)

×
∫

dµ(r)({aκ}) det
αβ

δ(εα − ε ′
β − Vαα) (16)

where Vαα are the diagonal elements of V = N
∑r

κ=1 vκaκ ⊗a†
κ . It is worth noting at this point

that if integrating over dµ(r)({aκ}) does not introduce correlations between Vαα, the distribution
function acquires, apart from the asymmetry introduced by the confining potential, a form
reminiscent of a quantum-mechanical transition amplitude: the Vandermonde determinants
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play the role of Slater determinants describing antisymmetric many-fermion wavefunctions,
and the determinantal form of the transition kernel implies that the fermions are non-interacting
albeit subject to an unusual single-particle Hamiltonian. Correlations between Vαα then imply
interactions between the particles.

We now analyse several limiting cases. If V itself is drawn from a unitary random
matrix ensemble P(V ) ∝ e−Tr V 2/2X2

(and is thus of rank r = N), the integration over
dµ(N)({aκ}) is subsumed into the integration over V . In ‘Cartesian’ coordinates∏

α dVαα

∏
α<β d Re Vαβ d Im Vαβ the matrix elements Vαα are explicitly uncorrelated

and independently Gaussian distributed. The transition kernel is thus proportional to
detαβ e−X2(εα−ε′

β )2/2, corresponding to free propagation of the ordinary one-dimensional
fermions in the quantum-mechanical analogy (with X2 playing the role of imaginary time).
An identical joint distribution arises also in the study of one-dimensional non-intersecting
random walkers [19].

Returning to the case of fixed V , and still considering r ∼ N , we note that the N2 − N

‘gauge degrees of freedom’ of V enter only through N combinations Vαα . An application of the
central limit theorem then implies that, after integrating over the ‘gauge degrees of freedom’,
Vαα become independently distributed with the Gaussian weight exp

{−N2V 2
αα

/
2 Tr V 2

}
.

Consequently, the form of the kernel coincides with the case when V is random.
Let us turn now to the case when r ∼ O(1). The remaining step in the derivation

of the joint distribution function of the eigenvalues is to implement the integration over
dµ(r)({aκ}). This can be done in two ways which lead to different forms of the distribution
functions but are ultimately equivalent in the N → ∞ limit when applied to the calculation
of the correlation functions. The first (exact) procedure requires enforcing the conditions of
orthonormality between the r complex vectors aκ . Although quite simple in the r = 1 case,
already for r = 2 it leads to a somewhat lengthy calculation, as we will show below, and it
quickly becomes unmanageable for larger values of r. If, however, the ultimate interest is in the
correlation functions Rnm in which the scaling limit N → ∞ is taken at fixed values of n and m,
integrating over the remaining 2N −n−m ‘energies’ leaves the correlation function dependent
only on a finite number of components aκα of the r vectors aκ . A well-known result in RMT
[2] states that the latter are distributed independently according to the Porter–Thomas formula
e−N |aκα |2 . The distribution functions obtained by replacing the whole of dµ(r)({aκ}) with the
product of independent Porter–Thomas distributions for each of the Nr components of aκ can
be interpreted as resulting from the substitution of a ‘canonical’ ensemble for the gas of levels
in place of the ‘micro-canonical’ ensemble implied by the identity Tr H ′ = Tr(H + V ).

2.1. Exact (‘micro-canonical’) joint distribution functions

To illustrate the method, let us first consider the r = 1 case. The corresponding distribution
function and the lowest order nontrivial correlation function (R11 in our notation) have been
derived using a somewhat different approach in [21]. V is parametrized as vNa ⊗ a†, and for
a single normalized complex vector a the measure dµ(1)(a) becomes

dµ(1)(a) = J1δ(a†a − 1) e−ηa†a d[a] (17)

where d[a] denotes the unconstrained measure
∏N

α=1 daα da∗
α/π , and η is a positive

infinitesimal introduced for convergence. The normalization constant J1 is determined from

1 = J1

∫
d[a]

∫ ∞

−∞

dx

2π
eix−i(x−iη)a†a = J1

∫ ∞

−∞

dx

2π

eix

(ix + η)N
= J1

(N − 1)!
. (18)
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Substituting this measure into (16) we obtain

P({ε}, {ε ′}) = CU|c|2µN

(2π)N
2−N

exp

(
−

N∑
α=1

W(εα)

)
	(H)	(H ′)

(N − 1)!

(N |v|)N−1

× δ


∑

β

ε ′
β −

∑
α

εα − Nv


 det

αβ
θ [Sign v(ε ′

β − εα)]. (19)

As expected [21], the determinant is nonzero only if the two sets of levels satisfy the ‘interleaved
comb’ constraint εα < ε ′

α < εα+1 for v > 0 and εα−1 < ε ′
α < εα for v < 0.

We next consider the r = 2 case. It is convenient to use a symmetrized expression
V = vN(a ⊗ a† − b ⊗ b†) where a and b are two complex mutually orthogonal N-component
vectors of length 1, and v is the scalar (positive) parameter characterizing the magnitude of
V . More general expressions can be reduced to this form by a simple rescaling in the final
results. It is also convenient to re-exponentiate the δ-functions in the determinant in (16) so
that the λ integrals are performed at a later stage in the calculation. The measure dµ(2)(a, b)

is explicitly parametrized as

dµ(2)(a, b) = J2 d[a] d[b] δ(a, b) e−η(a†a+b†b) (20)

where δ(a, b) stands for

δ(a†a − 1) δ(b†b − 1) δ(a†b + b†a) δ

(
1

i
[a†b − b†a]

)
(21)

and J2 is the normalization constant. To compute J2, the δ-functions are exponentiated with
the help of two real Lagrange multipliers x and y, and a complex Lagrange multiplier z:

1 = J2

∫
[da][db] δ(a, b) exp{−η(a†a + b†b)} = J2

∫
dx dy d Re z d Im z

(2π)4
[da][db]

× exp{i(x − iη)(1 − a†a) + i(y − iη)(1 − b†b) − iza†b − iz∗b†a}.
Performing the integrals, we find

J2 = 4π

(
2

π

)2N

(−1)N(N − 1)!(N − 2)!. (22)

With these definitions, we have

P({ε}, {ε ′}) = CUJ2

(2π)N
2 	(H)	(H ′)

∫
dµ(Uλ)

N∏
k=1

dλk d[a] d[b]δ(a, b) exp{i Tr(λV )}

×
∑
σ,σ ′

(−1)σ+σ ′
exp

{
i

N∑
α=1

(εαλσ(α) − ε ′
αλσ ′(α))

}
exp

{
−

N∑
α=1

W(εα)

}
. (23)

Proceeding as in the computation of J2, we obtain

P({ε}, {ε ′}) = CU|J2||c|2µN

(2π)N
2 	(H)	(H ′)

(
π2

Nv

)N ∫ dx dy d Re z d Im z

(2π)4
ei(x+y)

×
∑
σ,σ ′

(−1)σ+σ ′
N∏

k=1

∫
dλk

exp{iλk(εσ(k) − ε ′
σ ′(k))/Nv}

(λk − x + iη)(λk + y − iη) + |z|2

× exp

{
−

N∑
α=1

W(εα)

}
. (24)
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After integrating over the eigenvalues of λ we obtain

P({ε}, {ε ′}) = CU|J2||c|2µNN!

(2π)N
2−N

	(H)	(H ′)
(

π2

Nv

)N
1

8(2π)3
exp

(
−

N∑
α=1

W(εα)

)

×
∑

σ

(−1)σ
∫ ∞

−∞
dτ exp

{
iτ
∑N

α=1(εα − ε ′
σ (α))

2Nv

}∫ ∞

−∞
dt eit

∫ ∞

0
ζdζ

×
{

θ(t2 − ζ 2)(−ist )
N

exp
{−i

√
t2 − ζ 2st	σ

}
(√

t2 − ζ 2 − iηst

)N
+ θ(ζ 2 − t2)

exp
{−√ζ 2 − t2	σ

}
(√

ζ 2 − t2 + iηst

)N
}

where τ = x−y, t = x +y, ζ = 2|z|, st ≡ Sign t , the ambiguities in the analytic properties of
the integrand are resolved by letting t → t − iη, and 	σ = ∑N

α=1 |εα − ε ′
σ (α)|/2Nv. The extra

factor N! comes from performing one of the sums over permutations. Note that the parameter
	σ depends only on the absolute values of the distances between the levels in contrast to the
case of rank r = 1 perturbation [21].

Integration over τ gives a factor of 4πNvδ
[∑

α(εα − ε ′
α)
]

which simply enforces the
identity Tr H = Tr H ′. Performing the remaining integrations, we find

P({ε}, {ε ′}) = 2CU|c|2µN

(2π)N
2−N

(
4

Nv

)N−1

N!(N − 1)!δ

[∑
α

(εα − ε ′
α)

]

×	(H)	(H ′) exp

(
−

N∑
α=1

W(εα)

)∑
σ

(−1)σ θ(1 − 	σ)(1 − 	σ )N−2. (25)

Note the hard constraint on the sum of the absolute values of the level shifts
∑

α|εα − ε ′
σ (α)| �

2Nv. Note also that this result cannot be simplified in an obvious way in the N → ∞ limit
since 	σ does not scale as 1/N . Indeed, the natural scale for v is the mean level spacing 	̄,
and

∑
α|εα − ε ′

σ (α)| ∼ O(N	̄) so that the 	σ ∼ O(1). The distribution functions (16) and
(27) below are equivalent only in the sense that they lead to identical correlation functions in
the ‘thermodynamic’ limit N → ∞.

2.2. ‘Canonical’ joint distributions

As discussed above, after neglecting O(1/N) corrections, the measure dµ(r) for finite r is
brought to the simple form

dµ(r)({aκ}) =
r∏

κ=1

N∏
α=1

N daκα da∗
κα

π
e−N |aκα |2 . (26)

Due to the factorized structure of this measure, the transition kernel in (16) acquires the
determinantal form

det
αβ

D̂−1
{εα ;v̂}δ(εα − εβ) (27)

where the action of the differential operator D̂{ε;v̂} on an arbitrary function f (ε) is defined as

D̂{ε;v̂}f (ε) = det(1̂ − v̂ d/dε)f (ε) (28)
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and its inverse has a convenient integral representation

D̂−1
{ε;v̂}f (ε) =

∫ r∏
κ=1

dψκ dψ∗
κ

π
e−|ψ|2f (ε + ψ∗v̂ψ). (29)

In the opposite case of infinite rank, the central limit theorem ensures that the diagonal
matrix elements Vαα are independently Gaussian distributed. In consequence, the differential
operator D̂{ε;v̂} simplifies to

D̂{ε;v̂} = exp

{
−1

2
Tr v̂2 d2

dε2

}
. (30)

Here and below when considering the infinite rank case we assume Tr V = 0 since a nonzero
value of Tr V can be accounted for by a trivial uniform shift of the spectrum.

3. Parametric correlation functions

3.1. Parametric correlation functions in the energy representation

The objective of this section is to present a derivation of the multipoint correlation function
Rnm (equations (38) and (44) below). The joint distribution function defined by equations
(16) and (27) serves as the basis for this calculation which employs a scheme based on
the orthogonal polynomial expansion. In accordance with the definition (7), the parametric
correlation function is represented as

Rnm

({Ea}na=1, {E′
b}mb=1

) =
∫ N∏

α=1

dεα

N∏
β=1

dε ′
βP({ε}, {ε ′})S({E})S′({E′}) (31)

where the source terms S({E}) and S′({E′}) are defined as

S({E}) =
n∏

a=1

N∑
αa=1

δ
(
Ea − εαa

)
S′({E′}) =

m∏
b=1

N∑
βb=1

δ
(
E′

b − ε ′
βb

)
. (32)

Integrating over all ε′ we obtain

Rnm

({Ea}na=1, {E′
b}mb=1

) =
∫ N∏

α=1

dεα	(ε) exp

{
−

N∑
α=1

W(εα)

}
S({E})

×
N∏

β=1

D̂−1
{εβ ;v̂}


	(ε)

m∏
b=1

N∑
βb=1

δ
(
E′

b − εβb

) . (33)

Let us denote as πn and πm, respectively, the set of all distinct indices αa in the multiple sum
over α1, . . . , αn, and the set of all distinct indices βb in the multiple sum over β1, . . . , βm. It
is now convenient to split the product of D̂−1 as

∏
β∈πm

D̂−1
{εβ ;v̂}

N∏
β=1,β /∈πm

D̂−1
{εβ ;v̂}. (34)

All the factors in the second product act only on the variables in 	(ε) while the operators in the
first product act on the variables in both 	 and the source term δ-functions. The Vandermonde
determinant involves only polynomials of degree p − 1 in its pth row, so that the action of a
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product of N identical differential operators transforms the elements in its pth row into different
polynomials of the same degree and with the same leading term. Consequently,

N∏
β=1

D̂−1
{εβ ;v̂}	(ε) ≡ 	(ε) and

N∏
β=1,β /∈πm

D̂−1
{εβ ;v̂}	(ε) =

∏
β∈πm

D̂{εβ ;v̂}	(ε). (35)

Integrating by parts over the variables in πm we arrive at

Rnm

({Ea}na=1, {E′
b}mb=1

) =
∑

β1 ,...,βm
α1 ,...,αn

∫ N∏
α=1

dεα


∏

β∈πm

D̂{εβ ;v̂}	(ε)


 m∏

b=1

δ
(
E′

b − εβb

)

×
∏
β∈πm

D̂†−1

{εβ ;v̂}

[
exp

{
−

N∑
α=1

W(εα)

}
	(ε)

n∏
a=1

δ
(
Ea − εαa

)]
(36)

where D̂†
{ε;v̂} = D̂{ε;−v̂}. The above expression is manifestly asymmetric with respect to the

confining potential W(ε). As long as all the energies are close to the centre of the band, and
the change in the average DoS induced by the potential V is negligible, the action of D̂ on W

can be ignored. It is instructive, however, to consider a more general case. To this end, we
introduce a new operator

ˆ̃D{ε;v̂} = exp{−W(ε)/2}D̂{ε;v̂} exp{W(ε)/2}. (37)

When (36) is rewritten in terms of ˆ̃D and ˆ̃D†, each of the Vandermonde determinants appears
in combination with

∏N
α=1 exp{−W(εα)/2}, so that they can be equivalently written as

detαβ ϕα−1(εβ) where ϕα−1(ε) = exp{−W(ε)/2}pα−1(ε), and pα(ε) are the polynomials
orthogonal with respect to the weight exp{−W(ε)}. Expanding the determinants, and using
the orthonormality of the set of functions ϕα(ε), we arrive at the following representation of
the correlation function as an (n + m) × (n + m) determinant,

Rnm

({Ea}na=1, {E′
b}mb=1

)

= det


 k

(
Ea1, Ea2

) ˆ̃D−1
{E′

b2
;v̂}
[
k
(
Ea1 , E

′
b2

)− δ
(
Ea1 − E′

b2

)]
ˆ̃D†

{E′
b1

;v̂}k
(
E′

b1
, Ea2

) ˆ̃D−1
{E′

b2
;v̂}

ˆ̃D†
{E′

b1
;v̂}k
(
E′

b1
, E′

b2

)

 (38)

where the indices a and a′ (b and b′) run from 1 to n (from 1 to m). The kernel

k(E,E′) =
N−1∑
p=0

ϕp(E)ϕp(E′) (39)

describes the correlations among the levels of the original matrices H, while the lower right
corner of the matrix describes the correlation functions within the ensemble defined by the
distribution function P(H) = CU exp{−Tr W(H − V )}. The cross-correlations between H
and H ′ = H + V are encoded in the off-diagonal blocks of (38). In the bulk scaling limit the
kernel k takes the form [11]

k(E,E′) = Im exp{iπωρ(ε)}/ω ≡ πρ(ε)k[πρ(ε)ω] (40)

where ω = E′ − E and ε = (E′ + E)/2.
The bulk of the present paper is devoted to the case when the strength of the perturbation

V is such that the parametric correlators between the ‘old’ and the ‘new’ levels are O(1).
This condition is fulfilled if Tr V 2 ∼ O(N2	2). In this regime, the operator ˆ̃D{ε;v̂} can be
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explicitly evaluated using a representation of D̂ as an integral over a vector of Grassmann
variables χ,

ˆ̃D{ε;v̂} ≡ exp[−W(ε)/2]
∫

dχ dχ∗ exp

{
−|χ|2 − χ∗v̂χ

d

dε

}
exp[W(ε)/2]

≈
∫

dχ dχ∗ exp[W ′(ε)χ∗v̂χ/2] exp

{
−|χ|2 − χ∗v̂χ

d

dε

}
= det[1 − v̂W ′(ε)/2]D̂{ε;r̂(v̂)} (41)

where r̂(v̂) = v̂/(1 − v̂W ′(ε)/2). Assuming that all the energies in both sets {E} and {E′} lie
within a few level spacings of some central energy ε, and since the determinantal structure of
(38) ensures that the operators D̂ and D̂−1 come in pairs, the determinant in the prefactor can
be dropped.

The derivative of the confining potential is related to the real part of the average Green
function via

W ′(ε) = 2 −
∫

ρ(z)

z − ε
≡ 2 Re G(ε). (42)

Consequently, r(v) can be represented as the solution of the equation

r̂ (v̂) = v̂ + v̂ Re G(ε)r̂(v̂) (43)

which can be immediately identified as the equation for the reactance matrix for scattering
off the potential V . In fact, as can be shown using the methods of statistical field theory [12],
the parametrization of D̂ in terms of the corresponding reactance matrix retains its validity in
the more general case of non-invariant distributions P(H). The eigenvalues of the reactance
matrix are conveniently parametrized as tan δκ where δκ are the corresponding phase shifts.

As discussed above, the parametric correlations generically fall into two regimes
corresponding to the rank of V being finite or infinite. In the latter case, the condition
Tr V 2 ∼ O(N2	2) ensures that, for a generic eigenvalue vi of v̂, and at a generic position ε

in the spectrum, viW
′(ε) � 1. Thus the distinction between ˆ̃D and D̂ is meaningful only in

the finite rank case, and to simplify notation we will use the symbol D̂ in both cases with its
parametrization implied by the context.

Similarly, to the leading order in the 1/N expansion, the DoS ρ(ε) can be approximated
by an ε-independent inverse mean level spacing 1/	̄, thus simplifying (38) to the form given
in [17],

Rnm

({Ea}na=1, {E′
b}mb=1

)
= det

(
k
(
εa2 − εa1

)
D̂−1

{ε′
b2

;v̂}
(
k
[
ε′
b2

− εa1

]− δ
[
ε′
b2

− εa1

])
D̂{εa2 ;v̂}k

(
εa2 − ε′

b1

)
k
(
ε′
b2

− ε′
b1

)
)

(44)

where v̂ = v̂/	̄ and Rnm = 	̄n+mRnm. In the r → ∞ limit this equation reproduces the
results obtained previously [7, 18]. The representation of Rnm in the form of λ integrals
characteristic of the non-linear sigma model calculations [7, 12] corresponds to the Fourier
decomposition of D̂k and D̂−1[k − δ] in (44).

3.2. Universality in shifted distributions

To draw a connection with some previous studies of parametrically deformed random matrix
ensembles [22, 23], let us briefly consider the opposite case of a perturbation strong enough
to significantly affect the DoS. In this regime, the cross-correlations are small as 1/N . There
remains, however, the question of whether the correlation functions of a matrix ensemble
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defined by the shifted distribution PV (H) = CU exp{−Tr W(H − V )} are universal. To the
best of our knowledge, this question has been answered so far in the affirmative only in the case
when W is quadratic [22] (see also [24] where the case of non-Gaussian potential with a linear
source term was considered). The formalism developed above affords an opportunity to extend
the proof to the case of arbitrary W(H) (still, however, assuming strong confinement). The
corresponding correlation functions, as follows from (38), have the determinantal structure
with the kernel kv(ω, ε) = ˆ̃D−1†

{ε1;v̂}
ˆ̃D{ε2;v̂}k(ω, ε). The operator D̂ in this regime is given by

equation (30). Expanding the difference W(ε2) − W(ε1) ≈ ωW ′(ε), we obtain

kv(ω, ε) = exp{−ωW ′(ε)/2} exp{−π2x2∂ω∂ε} exp{ωW ′(ε)/2} Im
exp{iωπρ(ε)}

πω
(45)

where x = (Tr v̂2)1/2/π . By virtue of (42), the last two exponents can be combined to obtain
Im exp{ωG(ε)}, where G(z) is defined as the analytic continuation of the retarded Green
function G(ε) = −∫ dzρ(z)/(z − ε) + iπρ(ε) onto the complex plane with cuts along the real
axis outside the support of the DoS ρ(ε). By employing an integral representation of the
differential operator

exp{−π2x2∂ω∂ε} =
∫

dζ dζ ∗

π3x2
exp{−|ζ |2/π2x2 − ζ ∗∂ω + ζ ∂ε} (46)

and differentiating with respect to ε, equation (45) is brought to the form

∂ε[exp{ωW ′(ε)/2}kv(ω, ε)]

=
∫

dζ dζ ∗

π3x2
exp{−|ζ |2/π2x2} Im exp{(ω − ζ ∗)G(ε + ζ )}G′(ε + ζ ). (47)

After a change of variables r = |ζ |2, u = ei arg ζ we note that, since G is analytic by
construction, the only non-analyticity of the integral over u is due to the pole generated
by the solution u0(ε) of the equation π2x2G(ε + u) + u = 0 (existence of multiple solutions
of this equation would contradict level number conservation). We thus find, upon rescaling u
and integrating over r,

∂ε[exp{ωW ′(ε)/2}kv(ω, ε)] = Im
∮

du
exp{ωG(ε + u)}

π2x2G(ε + u) + u
G′(ε + u)

= Im
exp{−ωu0(ε)/π

2x2}G′(ε + u0(ε))

1 + π2x2G′(ε + u0(ε))
(48)

where the contribution from integrals along the cuts vanishes upon taking the imaginary
part of this expression. Integrating over ε and using [1 + π2x2G′(ε + u0(ε))](du0/dε) =
−π2x2G′(ε + u0(ε)), we find

kv(ω, ε) = exp{−ωW ′(ε)/2 + ω Re u0(ε)} sin ωρv(ε)

ω
(49)

where the renormalized DoS is ρv(ε) = −Im u0(ε)/π
2x2. The exponential prefactors cancel

out due to the determinantal structure of the correlation functions, thus establishing their
universal form.

3.3. Parametric correlation functions in the number representation

The ‘complementary’ number-dependent correlation functions are generically expressed as
derivatives of the corresponding generating functions. The archetypal generating function
is the probability Pnn′(J, J ′) to find n(J ) = n levels in the interval J of the unperturbed
sequence and n′ levels in the interval J ′ of the perturbed sequence, where n(J ) is the number
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of levels in the interval J :

Pnn′(J, J ′; x) ≡ 〈δn,n(J )δn′,n(J ′)〉 = (−1)n+n′

n!n′!

∞∑
k=n

∞∑
k′=n′

(−1)k+k′
rkk′

(k − n)!(k′ − n′)!
. (50)

Here rkk′ represents the correlation function Rkk′ integrated over the direct product of intervals
J ⊗k ⊗ J ′⊗k′

with the corresponding measures dmJ and dmJ ′ . The intervals J and J ′

may, generically, consist of an arbitrary number of disjointed segments. Equation (50) is
a straightforward generalization of the non-parametric analogue Pn(J ) (see, e.g., appendix 7
of [2]). For later convenience in carrying out the summations, rkk′ can be represented in the
form of a fermionic functional integral

rkk′ = det K
∫

D�D�̄

(∫
dmJ (u)ξ̄ (u)ξ(u)

)k (∫
dmJ ′(w)η̄(w)η(w)

)k′

× exp

{∫
du

∫
dw�̄(u)K−1(u,w)�(w)

}
(51)

where �̄ = (ξ̄ , η̄) is a fermionic doublet. The matrix kernel K̂ is easily reconstructed from
(38),

K(u,w) =
(

k(u,w) D̂−1
w [k(u,w) − I]

D̂†
uk(u,w) D̂−1

w D̂†
uk(u,w)

)
. (52)

Here the matrix elements of the scalar kernel k̂ are given by (39), and I is adopted as a shorthand
for the Dirac δ-function. For brevity we also drop the subscript r̂(v̂), and D̂ is understood to
be the function of either the single parameter Tr v̂2 or the r phase shifts δκ parametrizing r̂(v̂)

in the infinite and finite rank cases, respectively.
Equations (50)–(52) can be used directly to compute a certain class of correlation functions

exemplified by the correlation between level spacings of the original and perturbed level
sequences centred at given energies E and E′, respectively. Since our main interest, however, is
in the correlation functions in the number representation, we need to be able to relate the levels
ε ′
β in the new sequence to the parametric ‘descendant’ of a given level εα in the unperturbed

sequence. The absence of level crossings allows one to do this by demanding, e.g., that if an
interval Jε = (−∞, ε] of the unperturbed sequence contains exactly n levels (as counted from
the bottom of the band), the corresponding interval J ′

ε+ω of the perturbed sequence contains
exactly n + q levels, where q is fixed and n is arbitrary. By construction, then, the uppermost
level in the interval J ′

ε+ω is separated by q − 1 levels from the parametric descendant of the
uppermost level in the interval Jε . Summing over all n we find the corresponding probability as

Pq(Jε, J
′
ε+ω; x) ≡ 〈

δn(Jε),n(J ′
ε+ω)+q

〉 = ∞∑
n=0

1

n!(n + q)!

∞∑
k=n

k′=n+q

(−1)k+k′+qrkk′

(k − n)!(k′ − n − q)!

=
∫ 2π

0

dφ

2π
eiqφ

∞∑
k=0
k′=q

(−1)k+k′+qrkk′

k!k′!
zk

+z
k′
− (53)

where z± = 1 + e± iφ . Substituting (51) into (53), one finds that

Pq(J, J ′; x) = (−1)q
∫ 2π

0

dφ

2π
eiqφZq(ω, x; φ) (54)

where

Zq(ω, x; φ) = det[Iσ0 − K̂�(φ)] −
q−1∑
k′=0

∂k′
γ

k′!
det[Iσ0 − K̂�γ (φ)]

∣∣∣∣∣
γ=0

(55)
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and, denoting the Pauli matrices as σi ,

�(φ) =
(

z+ 0
0 z−

)
�γ (φ) =

(
z+ 0
0 γ z−

)
.

The determinants are understood as functional determinants on the space of two-component
functions defined on the product interval J ⊗ J ′.

Although the formalism in principle can be applied at the spectral edge, we are primarily
interested in the correlation functions in the bulk of the spectrum. Taking the scaling limit
would then greatly facilitate the calculation. In order to avoid unessential complications
related to the energy dependence of the average DoS, we replace k̂ in (52) with its value (40)
in the scaling limit assuming 	̄ ≡ ρ−1(ε) is a constant, and then regularize k as

kη(u − w) = sin π(u − w)

π(u − w)
exp[−(1/2)η(|u| + |w|)] (56)

where the limit η → 0 is implied in all expressions involving this kernel, and the energy
variables are rescaled by 	̄. Using equation (51) it is easily shown that 〈n(J∞)〉 = 〈n(J ′

∞)〉 =
2/η, and 〈[n(J∞) − n(J ′

∞)]2〉 ∼ O(η). Thus, although the regularization formally violates
the level number conservation, the corresponding error tends to zero in the limit η → 0. At
the same time, for any finite value of η the number of levels in the semi-infinite intervals Jε

and J ′
ε+ω is finite, ensuring the convergence of the integrals over energies at the lower limit.

In the following we will suppress the index η.
As written, (54) involves a matrix oscillating integral kernel defined on a product of semi-

infinite intervals. However, as we will now show for the case q = 0, it can be rewritten in the
form which is (i) more amenable to numerical analysis, and (ii) makes the integrability of the
kernel (in the sense discussed in [25]) manifest. Without loss of generality, we can set ε = 0,
and shift the variables so as to define the determinant on the quadrant (−∞, 0] ⊗ (−∞, 0].
The corresponding shift operator is absorbed into the redefinition D̂ → eω d/duD̂. The term
involving the δ-function in the upper right corner of (52) can be separated to reveal the dyadic
structure of the remainder,

K̂ =
(

I

D̂

)
⊗ (k̂ D̂−1 k̂) −

(
0 D̂−1

I

0 0

)

where we have also used D̂†
wk(u − w) = D̂uk(u − w). Now using the identities

(Iσ0 + z−D̂−1
Iσ+)

−1 = (Iσ0 − z−D̂−1
Iσ+) and det(Iσ0 + z−D̂−1

Iσ+) = 1, where σ+ =
(σ1 + iσ2)/2, one obtains

det[Iσ0 − K̂�(φ)] = det[I − (z+k̂ − z+z−k̂(D̂−1
I)D̂ + z−(D̂−1k̂)D̂)]. (57)

Employing the Fourier representations,{
k(u)

δ(u)

}
= 1

2

∫ ∞

−∞
dλ

{
θ(1 − λ)θ(1 + λ)

1

}
eiλπu

one finds that

[z+k̂ − z+z−k̂(D̂−1
I)D̂ + z−(D̂−1k̂)D̂](u,w)

=
∫ 1

−1

dλ

2
eiπλ(w−u)

{
z+ − z+z−

2π i

∫ ∞

−∞
dµ

eiπw(µ−λ)D−1(µ)

λ − µ − iδ
D̂ + z−D−1(λ)D̂

}
(58)

where in the infinite rank case

D(λ) = exp{iπωλ + π2x2λ2/2} (59)
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and in the finite rank case

D(λ) = exp{iπωλ}
r∏

κ=1

[1 − iλ tan δk]. (60)

Finally, the cyclic invariance of the determinant and the identity z+ + z− = z+z− are used to
perform the integrals in the u–w space, bringing the determinant to the form

Z0(ω, x; φ) ≡ det[Iσ0 − K̂�(φ)] = det
[−1,1]

[I − K(φ)] (61)

where the matrix elements of the kernel K(φ) are

K(λ, µ; φ) = 1

4π i

√
D(λ)D(µ)

F (λ; φ) − F(µ; φ)

λ − µ
(62)

and

F(λ; φ) = (z+ + z−)

π i
−
∫ ∞

−∞
dµ

D−1(µ)

µ − λ
− (z+ − z−)D−1(λ). (63)

Here the integral is understood in the sense of the Cauchy principal value, and the variables
λ and µ in (62) are restricted to the interval [−1, 1]. We employ the notation x to denote
the parametric dependence of Z in both finite and infinite rank cases. A similar, although
somewhat more cumbersome, expression is easily reconstructed for the contribution of
det [Iσ0 − K̂�γ (φ)] in the q �= 0 case.

Equations (61)–(63) form the central results of this section. In the remainder, we
will consider several applications of these equations to the calculation of number-dependent
correlation functions. The integral of the generating function itself

∫
dφZ0(ω, x; φ)/2π gives

the probability P0(ω, x) ≡ P0(Jε, Jε+ω). In order to obtain the correlation functions Pq and
Cq introduced above, we rewrite their definitions in the form

Pq(ω, x) = 〈
∂εn(Jε)∂εn(J ′

ε+ω)δn(Jε),n(J ′
ε+ω)+q

〉
(64)

Cq(x) = 〈
∂xn(Jε)∂xn(J ′

ε+ω)δn(Jε),n(J ′
ε+ω)+q

〉
. (65)

Using translational invariance both in the energy and the parameter spaces, rescaling the
energies by 	̄, and rescaling the variables in x by C

−1/2
0(0) [7], we obtain for the rescaled

correlation functions pq and cq [26]

pq(ω, x) = (−1)q
∫ 2π

0

dφ

2π

eiqφ

z+z−

(−∂2
ω

)
Zq(ω, x; φ) (66)

cq(x) = (−1)q
∫ ∞

−∞
dω

∫ 2π

0

dφ

2π

eiqφ

z+z−
(−∂x)

2Zq(ω, x; φ). (67)

Let us now consider several special cases. (i) In the infinite rank case x reduces to a single
parameter x = (Tr v̂2)1/2/π . The single level universal velocity autocorrelation function
c(x) ≡ c0(x) is plotted in figure 1. For comparison we also show the results of direct numerical
simulation of large random matrices [27]. We also find, based on numerical evaluation of
equations (66), (61), (62) and (63) that the function p(ω, x) ≡ p0(ω, x), the distribution of
parametric single level shifts, has a Gaussian form p(ω, x) = exp{−ω2/2σ(x)}/√2πσ(x),
in accordance with the earlier conjecture [20]. An analytical proof of this statement as well as
finding an analytical expression for the width σ(x) (shown in the inset in figure 1) are some
of the open questions posed by the results of the present investigation.

(ii) In the finite rank case further progress can be made due to a simple pole structure of
D−1(λ). Leaving a detailed consideration of the finite rank case to a future publication, we
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Figure 1. Single level universal velocity autocorrelation function obtained from (67), (61), (62)
and (63) (solid line) versus direct numerical simulation of large random matrices [27] (dots). The
width σ(x) of the Gaussian distribution of level shifts together with the x2 asymptotics at small x
is shown in the inset.

present here the results for c0 and p0 in the r = 1 case. x is now parametrized by a single
phase shift δ. In [17] the distribution p0 for r = 1 was found using the fact that, as a special
property of r = 1, this distribution coincides with the level spacing of the combined ensemble
of levels {εα} ∪ {ε ′

β}. Using the present formalism, this quantity as well as the corresponding
c0 can be evaluated in a more direct way. Introducing an auxiliary non-parametric kernel

k(λ, µ) = 1

2π i

1 − exp{iπω(λ − µ)}
λ − µ

(68)

as well as its Green function g(λ,µ) = (I − k)−1, and the determinant d(ω) = det(I − k), we
find (assuming δ > 0) that

c
(r=1)
0 (δ) = d2

dδ2

∫ ∞

0

dω

2π
d(ω) exp{−πω arctan δ}

∫ 1

−1
dλ dµ

g(λ,µ) exp{iπωµ}
arctan δ − iλ

. (69)

A somewhat more lengthy expression is obtained for p0,

p
(r=1)

0 (ω; δ) = θ(ω)
πd(ω)

2
exp{−πω arctan δ}

∫ 1

−1
dλ dµ

g(λ,µ) exp{iπωµ}
1 − iλ tan δ

×
{

(1 − iµ tan δ)2

tan δ
+ (1 − iµ tan δ)t (ω) − T (ω, δ)

}
(70)

where t (ω) = ∫ 1
−1 dλ dµg(λ,µ) exp{iπω(µ − λ)}, and

T (ω, δ) =
∫ 1

−1
dλ dµg(λ,µ) exp{iπω(µ − λ)}(1 − iµ tan δ). (71)

Up to a simple transformation, the kernel k is identical to the kernel that controls the non-
parametric level spacing distribution S1. In light of the ‘interleaved comb’ constraint on the
evolution of levels when r = 1, such a connection to S1 is not unexpected.

Within the framework presented here various number-dependent correlation functions in
the unitary ensembles can be computed ‘at will’. Nevertheless, several open questions remain
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unanswered, and their resolution would greatly enhance our understanding of parametric
evolution of random matrices. As already mentioned, the Gaussian form of p0 in the r → ∞
case is probably an indicator that the φ integration can be performed analytically in some
form in the infinite rank case also. If so, a more ‘processed’ expression for c

(r→∞)
0 may

emerge, throwing more light on the properties of the kernel K(φ). Separately, an analysis
of the asymptotic behaviour of the generating functions along the lines of [28] is a natural
way to develop the present formalism further. Finally, the technique of ‘counting’ the number
of levels between the spectral edge and a point in the bulk of the spectrum by means of
introducing a regularized kernel should be applicable to ensembles with different symmetries,
so that if an analogue of (38) is obtained for such ensembles, it is likely to open the door to
the computation of the corresponding number-dependent correlation functions.
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